LeetCode 第 69 题:“x 的平方根”题解

题解地址:二分查找 + 牛顿法(Python 代码、Java 代码)

说明:文本首发在力扣的题解版块,更新也会在第 1 时间在上面的网站中更新,这篇文章只是上面的文章的一个快照,您可以点击上面的链接看到其他网友对本文的评论。

传送门:69. x 的平方根

实现 int sqrt(int x) 函数。

计算并返回 x 的平方根,其中 x 是非负整数。

由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。

示例 1:

输入: 4 输出: 2 示例 2:

输入: 8 输出: 2 说明: 8 的平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

二分查找 + 牛顿法(Python 代码、Java 代码)

方法一:二分法

思想:使用二分法搜索平方根的思想很简单,就类似于小时候我们看的电视节目中的“猜价格”游戏,高了就往低了猜,低了就往高了猜,范围越来越小。因此,使用二分法猜算术平方根就很自然。

直觉告诉我们,一个数的平方根最多不会超过它的一半,例如 88 的平方根,88 的一半是 4442=16>84^2=16>8,如果这个数越大越是如此,因此我们要计算一下,这个边界是多少。为此,解如下不等式:

(a2)2a(\frac{a}{2})^2 \ge a

意即:如果一个数的一半的平方大于它自己,那么这个数的取值范围。解以上不等式得 a4a \ge 4 或者 a0a \le 0

于是边界值就是 44,那么对 00112233 分别计算结果,很容易知道,这 44 个数的平方根依次是 00111111

注意:这 44 个特值如果没有考虑到,有可能导致你设置的搜索边界不正确。在使用二分法寻找平方根的时候,要特别注意边界值的选择,以下给出两个参考代码。

参考代码 1:所有的数都放在一起考虑,为了照顾到 00 把左边界设置为 00,为了照顾到 11 把右边界设置为 x // 2 + 1

Python 代码:

class Solution:
    def mySqrt(self, x: int) -> int:
        # 为了照顾到 0 把左边界设置为 0
        left = 0
        # 为了照顾到 1 把右边界设置为 x // 2 + 1
        right = x // 2 + 1
        while left < right:
            # 注意:这里一定取右中位数,如果取左中位数,代码可能会进入死循环
            mid = left + (right - left + 1) // 2
            square = mid * mid
            
            if square > x:
                right = mid - 1
            else:
                left = mid
        return l

Java 代码:

public class Solution {

    public int mySqrt(int x) {
        // 注意:针对特殊测试用例,例如 2147395599
        // 要把搜索的范围设置成长整型
        // 为了照顾到 0 把左边界设置为 0
        long left = 0;
        // # 为了照顾到 1 把右边界设置为 x // 2 + 1
        long right = x / 2 + 1;
        while (left < right) {
            // 注意:这里一定取右中位数,如果取左中位数,代码会进入死循环
            long mid = left + (right - left + 1) / 2;
            long square = mid * mid;
            if (square > x) {
                right = mid - 1;
            } else {
                left = mid;
            }
        }
        return (int) left;
    }

}

Java 代码要注意到:如果中点 mid 声明为 int 类型,针对大整型测试用例通不过,因此变量需要声明为 long 类型,下同。

参考代码 2:事实上,只要单独照顾一下 00 这个特例就可以了。

参考代码:

Python 代码:

class Solution:
    def mySqrt(self, x: int) -> int:
        if x == 0:
            return 0
        
        left = 1
        right = x // 2

        while left < right:
            # 注意:这里一定取右中位数,如果取左中位数,代码可能会进入死循环
            mid = left + (right - left + 1) // 2
            square = mid * mid

            if square > x:
                right = mid - 1
            else:
                left = mid
        return left

Java 代码:

public class Solution {

    public int mySqrt(int x) {
        if (x == 0) {
            return 0;
        }
        // 注意:针对特殊测试用例,例如 2147395599
        // 要把搜索的范围设置成长整型
        long left = 1;
        long right = x / 2;
        while (l < r) {
            // 注意:这里一定取右中位数,如果取左中位数,代码可能会进入死循环
            long mid = left + (right - left + 1) / 2;
            long square = mid * mid;
            if (square > x) {
                right = mid - 1;
            } else {
                left = mid;
            }
        }
        return (int) l;
    }
    
}

注意: 这里二分法的使用是有技巧的(如果你没有意识到,这里很可能是个“坑”),下面我就上面注释中提到的:

注意:这里一定取右中位数,如果取左中位数,代码可能会进入死循环。

做一些解释。当 x = 9 的时候,我们不妨给“错误的”代码加上一些调试语句,这样你就会更清晰地发现死循环在什么时候出现,例如:

Python 代码:

class Solution:
    def mySqrt(self, x: int) -> int:
        if x == 0:
            return 0

        left = 1
        right = x // 2
        while left < right:
            # 调试代码开始:为了仔细观察区间左右端点,我们每进入一次循环,让线程休眠 1 秒
            import time
            time.sleep(1)
            print('调试代码,观察区间左右端点、中位数,和进入的分支: left = {} , right = {} , '.format(left, right), end='')
            # 调试代码结束

            # 错误代码,在分支左区间不发生收缩的情况下,中位数应该取右中位数
            mid = left + (right - left) // 2

            # 调试代码
            print('mid = {} ,'.format(mid), end=' ')
            square = mid * mid

            if square > x:
                # 调试代码
                print('进入 right = mid - 1 这个分支。')
                right = mid - 1
            else:
                # 调试代码
                print('进入 left = mid 这个分支。')
                left = mid
        return left


if __name__ == '__main__':
    # 当 x = 8 的时候,代码能得出正确答案
    x = 9
    solution = Solution()
    res = solution.mySqrt(x)
    print(res)

控制台输出:

调试代码,观察区间左右端点、中位数,和进入的分支: left = 2 , right = 4 , mid = 3 , 进入 left = mid 这个分支。
调试代码,观察区间左右端点、中位数,和进入的分支: left = 3 , right = 4 , mid = 3 , 进入 left = mid 这个分支。
调试代码,观察区间左右端点、中位数,和进入的分支: left = 3 , right = 4 , mid = 3 , 进入 left = mid 这个分支。
调试代码,观察区间左右端点、中位数,和进入的分支: left = 3 , right = 4 , mid = 3 , 进入 left = mid 这个分支。
调试代码,观察区间左右端点、中位数,和进入的分支: left = 3 , right = 4 , mid = 3 , 进入 left = mid 这个分支。
Traceback (most recent call last):
  File "/Users/liwei/(按照惯例这里不让你们看,虽然真的没有什么秘密,就是皮一下子很开心啊有木有)/LeetCode-Solution-Python/17-二分查找/0069-x 的平方根-2(平方根).py", line 37, in <module>
    res = solution.mySqrt(x)
  File "/Users/liwei/(按照惯例这里不让你们看,虽然真的没有什么秘密,就是皮一下子很开心啊有木有)/LeetCode-Solution-Python/17-二分查找/0069-x 的平方根-2(平方根).py", line 11, in mySqrt
    time.sleep(1)
KeyboardInterrupt

分析:如果取中点为左中位数,你看到死循环发生在 left = 3right = 4 的时候,此时区间只有 2 个元素。这是为什么呢?

此时索引区间 [3, 4] 的中位数为左中位数,即 mid = 3 ,此时 square = 9 < 9 不成立,进入 left = mid 这个分支,你发现问题了吗,区间不发生收缩,即下一轮循环的索引区间还是 [3, 4],此时中位数还取左中位数,即 mid = 3square = 9 < 9 不成立,又进入 left = mid 这个分支,死循环就是这样产生的。

接着,请你把 mid = left + (right - left) // 2 改成 mid = left + (right - left + 1) // 2 ,即选择右中位数,再观察一下控制台输出,就知道此时为什么要选右中位数了。

这个二分法模板我用了很久,感觉非常好用。于是我专门把这个二分法模板好用的地方、使用它的技巧和注意事项整理在了「力扣 」第 35 题:搜索插入位置的题解《特别好用的二分查找法模板(Python 代码、Java 代码)》,希望能对大家有所帮助。

复杂度分析:

  • 时间复杂度:O(logN)O(\log N),二分法的时间复杂度是对数级别的。
  • 空间复杂度:O(1)O(1),使用了常数个数的辅助空间用于存储和比较。

总结:

使用二分查找法搜索,注意特值对搜索边界的影响。

方法二:牛顿法

使用牛顿法可以得到一个正实数的算术平方根,因为题目中说“结果只保留整数部分”,因此,我们把使用牛顿法得到的浮点数转换为整数即可。

这里给出牛顿法的思想:

在迭代过程中,以直线代替曲线,用一阶泰勒展式(即在当前点的切线)代替原曲线,求直线与 xx 轴的交点,重复这个过程直到收敛。

image.png

说明:1、以上图片来自《牛顿法与拟牛顿法》

2、@LOAFER 的题解《牛顿迭代法》 的图和文字说明更好,而知乎问答《如何通俗易懂地讲解牛顿迭代法求开方?数值分析?》里面干货就更多了,建议大家出门左转观看,我这篇题解只是展示一下迭代公式如何计算。

image.png{:width=550}

注意:牛顿法得到的是平方根的浮点型精确值(可能会有一定误差),根据题目中的要求,把最后得到的这个数转换为 int 型,即去掉小数部分即可。

对“牛顿法”感兴趣的朋友们可以查一下牛顿法的应用:一个是求方程的根,另一个是求解最优化问题,在这里就不展开了。

参考代码:

Python 代码:

class Solution:

    def mySqrt(self, x):
        if x < 0:
            raise Exception('不能输入负数')
        if x == 0:
            return 0
        # 起始的时候在 1 ,这可以比较随意设置
        cur = 1
        while True:
            pre = cur
            cur = (cur + x / cur) / 2
            if abs(cur - pre) < 1e-6:
                return int(cur)

Java 代码:

public class Solution {

    public int mySqrt(int a) {
        long x = a;
        while (x * x > a) {
            x = (x + a / x) / 2;
        }
        return (int) x;
    }
}

说明:1e-6 是科学计数法,表示 11 乘以 1010 的负 66 次方,也就是 0.0000010.000001。有的地方使用 epsilonϵ\epsilon)表示 1e-6 ,用来抵消浮点运算中因为误差造成的相等无法判断的情况,它通常是一个非常小的数字,具体多小要根据你的精度需求来设置。

复杂度分析:

  • 时间复杂度:(待讨论,反正很快很快就是了 ^_^,调皮一下显示我的无知)。
  • 空间复杂度:O(1)O(1),使用了常数个数的辅助空间用于存储和比较。